Hydroeconomic Modeling and GSP Development

Steve Hatchett

Duncan MacEwan

ERA Economics, LLC

2018 Western Groundwater Conference Groundwater Resources Association

> Sacramento, CA September 27, 2018

Topics

- Costs and benefits of sustainable yield
- Options to achieve sustainability: New supplies, reoperation, recharge, demand management
- Phasing-in sustainability requirements to minimize economic impacts
- Simple example to show benefit of flexibility
- Hydroeconomic modeling example

Costs and Benefits of Achieving Sustainable Yield

- Benefits
 - Avoid impacts from undesirable effects
 - Higher pumping lifts; subsidence; depletion of connected streams; stranded wells; poor water quality
 - Avoid state intervention
- Costs
 - Costs to the implementation agency (and recovery of the costs)
 - Costs imposed on water users
- Distribution of costs and benefits

Options to Achieve Sustainable Yield

- Options to bring basins into a sustainable balance by 2040 include
 - Develop new sources of supply or recharge
 - Better utilize existing supplies
 - Reduce demand
- Developing new supply is politically preferable
- If affordable new supplies are limited, demand management (reducing water use) will fill the gap

Demand Management

- Key GSP evaluation criteria (Article 6. § 355.4.b.(5)):
 - The GSP must specify feasible projects and management actions that are likely to prevent undesirable results and ensure that the basin is operated within its sustainable yield
- Demand management (reducing water use) program
 - Scalable over time, depending on affordable supply augmentation projects
 - Ensure subbasin meets sustainable yield, and GSP is approved
- Demand management options may include:
 - Groundwater pumping limits,
 - Groundwater extraction fees
 - Assignment of pumping "credits," and a mechanism for trading those credits
 - Different mixes of extraction fees, pumping limits, and trading can achieve sustainability target

Environment • Resources • Agriculture

Demand Management Costs

- The cost of idling land varies by crop
 - Permanent land retirement includes significant capital costs
 - Groundwater extraction fees water market prices, have be greater than water values in crop production

Demand Management Costs (cont.)

- Permanent crops typically have a negative cash flow for 3-5 years after establishment
 - The value of water is significantly higher for young orchards
 - Expanding orchard acreage across the state means many subbasins have a greater proportion of young orchards

Example Almond Orchard Water Values

Example of Phased Demand Management

- Assume 100 taf of current overdraft, uniform reduction
 - Phasing affects cost and undesirable results
 - Delaying demand management means planned depletion of storage,
 tradeoff between pumping depths and early land retirement

Goals of Sustainable Yield

- Sustainable yield considerations include
 - Avoiding undesirable results (GSP regulations)
 - Minimizing the economic adjustment costs
- As an example, should the sustainable yield (and corresponding demand management) be fixed every year, or vary across years?
 - The value of water increases during dry/critical years
 - Variability in total water supply increases adjustment costs

SIMPLE COMPARISON: CONSTANT PUMPING LIMIT VS. VARIABLE THAT REDUCES ANNUAL ADJUSTMENT COSTS

Example Analysis for Kings and Tulare Lake Subbasins

Annual Gross Value	\$4.55 billion
Applied water	3.13 MAF
Surface water supply	0.71 MAF
Safe yield (est. for example)	2.03 MAF

Fixed-Rule Pumping

- Impose a firm pumping limit = sustainable yield, every year
 - Average annual land idling cost: \$630 million
 - Present value of land idling cost: \$9.1 billion

Variable Pumping

- Achieve sustainable yield, but
- Allow pumping to vary and "smooth" total supply
 - Average annual land idling cost: \$603 million
 - Present value of land idling cost: \$8.7 billion

INTEGRATED HYDROECONOMIC ANALYSIS

Integrate Groundwater Analysis (C2VSim) and Economic Analysis (SWAP)

- Extending analysis using a hydroeconomic model
 - Hydroeconomic Modeling of Sustainable Groundwater Management. Water Resources Research. 2017. 53(3)
- Consider all costs and benefits that can be quantified
- Calibration approach and analysis method
 - Economic parameters in GW model or vice-versa?
 - Embedded groundwater response functions in SWAP economic model
 - Evaluated transition paths for sustainability and economic effects

SWAP-C2VSim Analysis

- Kings-Tulare Lake Basin study area
- Regression analysis of C2VSim groundwater pumping – elevation response
 - Close calibration within the economic model (SWAP)

"Optimal" Sustainable Yield

- Simulate scenarios: baseline w/o SGMA, perfect foresight, managed pumping
- Include all relevant costs and benefits, if possible
 - Pumping cost, well replacement cost, crop value
 - Subsidence and water quality benefits are not valued in this example
- Consider value of trading off wet and dry year pumping

Conclusion and Future Work

- Pumping rules should consider the safe yield, other GSP requirements, and benefits and costs
 - Get the best estimates of hydrology; calibrate groundwater models
 - Evaluate cost and feasibility of alternative supplies
 - Use demand management for the residual reduction
 - Consider all costs and benefits during transition and after
- Flexibility is valuable
 - Adjust to hydrologic year (expected surface supply)
 - Adjust to new information on GW conditions, recharge
 - Adjust to evolving crop market conditions

