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Topics 

• Costs and benefits of sustainable yield  
• Options to achieve sustainability: New supplies, 

reoperation, recharge, demand management 
• Phasing-in sustainability requirements to minimize 

economic impacts 
• Simple example to show benefit of flexibility 
• Hydroeconomic modeling example 
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Costs and Benefits of Achieving 
Sustainable Yield 
• Benefits 

– Avoid impacts from undesirable effects 

• Higher pumping lifts; subsidence; depletion of  connected streams; 
stranded wells; poor water quality  

– Avoid state intervention 

• Costs 
– Costs to the implementation agency (and recovery of  the costs) 

– Costs imposed on water users 

• Distribution of costs and benefits 
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Options to Achieve Sustainable 
Yield 
• Options to bring basins into a sustainable balance 

by 2040 include 
– Develop new sources of  supply or recharge  

– Better utilize existing supplies 

– Reduce demand 

• Developing new supply is politically preferable 
• If affordable new supplies are limited, demand 

management (reducing water use) will fill the gap 
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Demand Management 

• Key GSP evaluation criteria (Article 6. § 355.4.b.(5)):   
– The GSP must specify feasible projects and management actions that are 

likely to prevent undesirable results and ensure that the basin is operated 
within its sustainable yield 

 
• Demand management (reducing water use) program 

– Scalable over time, depending on affordable supply augmentation projects 
– Ensure subbasin meets sustainable yield, and GSP is approved 
 

• Demand management options may include: 
– Groundwater pumping limits,  
– Groundwater extraction fees 
– Assignment of  pumping “credits,” and a mechanism for trading those 

credits 
– Different mixes of  extraction fees, pumping limits, and trading can achieve 

sustainability target 
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Demand Management Costs 

• The cost of idling land varies by crop 
– Permanent land retirement includes significant capital costs 
– Groundwater extraction fees water market prices, have be greater 

than water values in crop production 
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Demand Management Costs (cont.) 

• Permanent crops typically have a negative cash 
flow for 3-5 years after establishment 
– The value of  water is significantly higher for young orchards 
– Expanding orchard acreage across the state means many subbasins 

have a greater proportion of  young orchards 
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Example of Phased Demand 
Management 
• Assume100 taf of current overdraft, uniform 

reduction 
– Phasing affects cost and undesirable results 
– Delaying demand management means planned depletion of  storage, 

tradeoff  between pumping  depths and early land retirement 
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Goals of Sustainable Yield 

• Sustainable yield considerations include 
– Avoiding undesirable results (GSP regulations) 

– Minimizing the economic adjustment costs 

• As an example, should the sustainable yield (and 
corresponding demand management) be fixed 
every year, or vary across years? 
– The value of  water increases during dry/critical years 

– Variability in total water supply increases adjustment costs 
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SIMPLE COMPARISON: CONSTANT 
PUMPING LIMIT VS. VARIABLE THAT 
REDUCES ANNUAL ADJUSTMENT COSTS 

10 



Example Analysis for Kings and Tulare 
Lake Subbasins 
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Annual Gross Value    $4.55 billion 
Applied water    3.13 MAF 

Surface water supply    0.71 MAF 
Safe yield (est. for example)    2.03 MAF 
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Fixed-Rule Pumping 
• Impose a firm pumping limit = sustainable yield, every 

year 
– Average annual land idling cost: $630 million 
– Present value of  land idling cost: $9.1 billion 
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Variable Pumping 
• Achieve sustainable yield, but  
• Allow pumping to vary and “smooth” total supply 

– Average annual land idling cost: $603 million 
– Present value of  land idling cost: $8.7 billion 
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INTEGRATED HYDROECONOMIC 
ANALYSIS 
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Integrate Groundwater Analysis (C2VSim) 
and Economic Analysis (SWAP) 
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• Extending analysis using a hydroeconomic model 
– Hydroeconomic Modeling of Sustainable Groundwater 

Management. Water Resources Research. 2017. 53(3) 
• Consider all costs and benefits that can be quantified 
• Calibration approach and analysis method 

– Economic parameters in GW model or vice-versa? 
– Embedded groundwater response functions in SWAP economic model 
– Evaluated transition paths for sustainability and economic effects 



SWAP-C2VSim Analysis 
• Kings-Tulare Lake Basin study area 
• Regression analysis of C2VSim 

groundwater pumping – elevation 
response 
– Close calibration within the economic model 

(SWAP) 
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“Optimal” Sustainable Yield 
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• Simulate scenarios: baseline w/o SGMA, perfect foresight, 
managed pumping 

• Include all relevant costs and benefits, if possible 
– Pumping cost, well replacement cost, crop value 
– Subsidence and water quality benefits are not valued in this example 

• Consider value of trading off wet and dry year pumping 

Positive benefits begin 



Conclusion and Future Work 

• Pumping rules should consider the safe yield, 
other GSP requirements, and benefits and 
costs 
– Get the best estimates of  hydrology; calibrate groundwater models 
– Evaluate cost and feasibility of  alternative supplies 
– Use demand management for the residual reduction  

– Consider all costs and benefits during transition and after 

• Flexibility is valuable 
– Adjust to hydrologic year (expected surface supply) 
– Adjust to new information on GW conditions, recharge 
– Adjust to evolving crop market conditions 
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